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LOADS AND DEFORMATIONS OF BUCKLED RECTANGULAR PLATES !

By MANUEL STEIN

SUMMARY

The mnonlinear large-deflection equations of
von Kdrmdn for plates are converted into a set of
linear equations by expanding the displacements into
a power series in terms of an arbitrary parameter.
The postbuckling behavior of simply supported
rectangular plates subjected to longitudinal com-
pression and subject to a uniform temperature rise
is inwvestigaled in detail by solving the first few of
the equations.

Ezxperimental data are presented for the com-
pression problem. Comparisons are made for total
shortening and for local strains and deflections which
indicate good agreement between experimental results
and theoretical results.

INTRODUCTION

Unlike simple columns, rectangular plates which
are supported on all edges may carry considerable
load beyond their buckling load. The postbuckling
behavior of such plates in the elastic range of the
plate material is studied in this investigation.
Some solutions for plates with simply supported
edges are presented, and these solutions should
provide a conservative estimate of the postbuck-
ling behavior of a rectangular plate of thin-wall
construction supported by relatively stiff support-
ing elements (stringers, ribs).

Numerous studies have been made of the post-
buckling behavior of flat rectangular plates; some
of the most important of these investigations are
described in references 1 to 13. The basic differ-
ential equations for a plate element undergoing
large deflections were presented by von Karmdn
in reference 1; von Kdrmén, Sechler, and Donnell

in reference 2 introduced the concept of effective
width. Various approximate solutions for post-
buckling behavior were presented by Cox (ref. 3),
Timoshenko (ref. 4), Marguerre and Trefftz (ref.
5), and Marguerre (ref. 6), where analyses were
carried out by energy methods. In reference 7,
Kromm and Marguerre extended the results of
references 5 and 6 for simply supported infinitely
long plates in compression. Koiter in reference 8
further extended this work to make it applicable
far beyond buckling. By means of Fourier series,
Levy in reference 9 obtained an “exact” solution
to the large-deflection equations of von Kérmdn
for square plates. The effects of initial deviation
from flatness for square plates were investigated
by Hu, Lundquist, and Batdorf in reference 10
and by Coan in reference 11 by means of the
Fourier series method of solution advanced in
reference 9. In reference 10, the unloaded edges
of the plate were constrained to remain straight;
whereas in reference 11, the side edges were free
to distort in the plane of the plate. Inreference 12
Mayers and Budiansky analyzed the behavior of
a square plate compressed beyond the elastic
buckling load into the range where plastic yielding
takes place. Alexeev in reference 13 obtained an
exact solution for the square plate buckling into
one buckle (as did Levy in ref. 9) but included in
addition an exact solution for the square plate
buckling into two buckles (in the direction of
loading).

With the exception of the analysis of Alexeev
(ref. 13), all previous studies of the postbuckling
behavior of rectangular plates used either energy
methods or Fourier-series expansions of the basic

! The information presented herein was a part of a dissertation entitled ‘‘Postbuckling Behavior of Rectangular Plates” which was offered in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, June 1958.
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nonlinear differential equations of von Kérmén.
Alexeev used a method of successive approxima-
tion. In the present paper the basic nonlinear
differential equations are converted into an infinite
set, of linear differential equations by expanding
the displacements into a power series in terms of
an arbitrary parameter. The first few of the
equations of the infinite set turn out to be the
small-deflection equations. Solution of these and
succeeding equations permits a study of the be-
havior of the plate at buckling and beyond, up
into the large deflection range. The postbuckling
behavior of a simply supported plate subjected to
longitudinal compression is studied in detail, and
the results are compared with other theoretical
results. A similar study is presented for such a
plate subject to a uniform temperature rise.

Experimental results which have not been pub-
lished previously are included in the appendix and
results from these and other experiments are com-
pared with the present theory.

SYMBOLS

plate length
plate width
plate thickness
i, j, m,n, r,s integers
u, v displacement of point on middle
surface of plate in 2- and
y-directions, respectively
w deflection of point on middle sur-
face of plate in direction normal
to undeformed plate
plate coordinates

> o

B
<

Eh?
12(1—p?)
Young’s modulus for material
total compressive load
temperature rise
resultant normal forces in 2- and

y-directions, respectively
resultant shearing force in xy-plane
buckling load
temperature rise for buckling
recoverable strain energy; that is,

energy released when edge re-
straints are removed
coefficient of thermal expansion
buckle width-length ratio, mb/a
arbitrary parameter
Poisson’s ratio for material

plate flexural stiffness, D=

ZNTUR D
Z

s

SIS

T MR

A total shortening (see eq. (27))

Yzy middle-surface shearing strain

€€y middle-surface strains in z- and
y-directions, respectively

€& bending strain at crest of buckle

€0 extreme fiber strain at crest of
buckle

ot >, o
4__ 7 —_—
V=2 Sty T oyt

When subscripts 2 and y follow a comma, they
indicate partial differentiation of the principal
symbol with respect to z and .

THEORY

In this section the von Kérmén large-deflection
equations for plates are converted from a set of
three nonlinear partial differential equations into
an infinite set of linear partial differential equa-
tions by expanding the displacements into a power
series in terms of an arbitrary parameter.

The method of solution presented is similar to
a perturbation method; however, in a perturba-
tion method consideration is restricted to solutions
which involve only small values of the arbitrary
parameter. It is not necessary to restrict the
arbitrary parameter to small values in the present
analysis, because the coefficients of the higher
powers are small. The motivation for the applica-
tion of this method was the observation that
available solutions of the postbuckling behavior
of rectangular plates subject to longitudinal com-
pression indicated that both the shortening and
the square of the center deflection were nearly
linear functions of the applied load in the first
part of the postbuckling range. For the compres-
sion problem it was thus expected that the first
few terms of a series of powers of (P—P,)/P,,
would be adequate to represent the displacement.
(P is the total applied load and P,, is the critical
load.) This expectation has been borne out.

For a plate with no lateral load the von Kérmén
large-deflection equations can be written in the
form

Nz,z‘i'Nzﬂ,y:O (la)
Ny y+Ney, =0 (1b)
DViw— (N, 5+ Nyw, 3y +2N w0, 2,)=0 (1c)

where subscripts ¢ and y which appear after a
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comma indicate partial differentiation with re-
spect to z and ¥, respectively. The strain-force
relations including the effects of change in tem-
perature T are

=g (Ne—u,) +aT (2a)
=gz (Ny—N,) +aT (2b)
'711/:2(11;];“) sz (20)

The forces appearing in equations (2) may be
solved for and thus expressed in terms of the
strains, as follows:

Ne=i febme—(m)aT] (o)

Ny=% letue,—(14wal]  (3b)

Eh
Mu—m Yau (3¢)
The strain-displacement relations are
]' 2
fz:u:z+§ W,z (43’)
1 2
fu:vw_l"j W,y (4b)
Yoy ="y 0, W, W,y (4c)

Equations (1), (3), and (4), together with a
complete set of boundary conditions, determine
the problem. These equations are subject to
the usual out-of-plane boundary conditions re-
quired in buckling studies (zero normal deflection
and zero moment for simply supported plates).
In addition, however, for postbuckling studies
it is necessary to specify in-plane conditions.
Only plates without initial eccentricities subject
to in-plane loading are considered.

It is assumed that u, », and w may be expanded
in a power series in terms of an arbitrary param-
eter e¢. For the present purposes u, », and w
are to be expanded about the point of buckling
(at buckling e=0):

U= u™ en (5a)

[=3
n=0,2

v= >, v@e" (5b)
n=0,2

w= i W™ en (5¢)
n=1,3

The «u™, v and w™ are functions only of x
and y. For plates without initial eccentricities
subject to in-plane loading the deflection w
is zero in the loading range prior to buckling
but % and » have values other than zero. Thus,
for small values of ¢, u and » would have values
close to their values just prior to buckling while
w may be proportional to e or some power of e.
The series for 4 and » is therefore expected to
start with the zero power of e while the series
for w is expected to start with a nonzero power.
As discussed in the first part of this section,
available solutions of the postbuckling behavior
of rectangular plates subject to longitudinal
compression indicated that the square of the
center deflection was nearly a linear function
of the applied load in the first part of the post-
buckling range. For the compression problem
it is convenient to relate e to the load P so that
&=(P—P,)/P,. Thus, the series for w will
start with the first power.

The series for 4 and v as written in equations
(5a) and (5b) start with a zero power and include
only even powers and the series for w (eq. (5¢))
starts with the first power and includes only odd
powers. The odd powers in the series for » and v
and the even powers in the series for w vanish for
problems of the type considered and, for simplic-
ity, they have been omitted from the start. Inci-
dentally, the odd powers in the series for » and
v and the even powers in the series for w may be
deduced to vanish, once it is recognized that, for
a given load, the parameter e may be either plus
or minus. For the type of problem considered,
the plate can buckle in either direction but the
deflection shape w(z,y) is independent of the direc-
tion of buckling (except for a sign) anywhere in
the postbuckling range. Hence, in order to pro-
vide that the shape can change only in sign, the
series for w can contain only odd powers of e. The
in-plane displacements % and » on the other hand
are unchanged by the direction of buckling and,
therefore, should include only even powers of e

In this method it is also necessary to expand
the externally applied loads and temperature dis-
tributions in terms of the arbitrary parameter.
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~ For example, the change in temperature 7', which
is independent of the direction of buckling, should
include only even powers of e:

T— S Twen (6)

n=0, 2

where 7 may be a function of z and y.

Upon substitution of equations (5) and (6) into
equations (3) and (4), the following relations are
obtained:

N 2 N(n) n+ Z 2 N(mn) m+n (73)

m=1,3n=1,3

N Z N(n) n+ i i N;mn)em—{-n (7b)

n=0, 2 m=1,3 n=1,3

Npy= Eo N@e"+ 21 N{memtn  (7¢)
= m

n=0, 2 =1,3 n=1,3
where
N = [0 — (4 )aT )
N =2 [0, — (1-+0)aT )
Eh
(ny ____ —7% (n) (n)
N:w 2(1+ ) (um +U,
N =50 Lh (0, 800,80 Fuw Pw, ) = N
N o (@0, 0, £70,47) = N ™
Eh
(mn) (M) (n)
N =gy

Since e was taken to be an arbitrary parameter,
the stipulation that a power series in e vanish re-
quires that each coefficient of the power series
vanish. If the expressions (5c¢) and (7) are sub-
stituted in equations (1), the requirement that
each coefficient in the power series vanish leads
to the following linear equations, which are the
first few of an infinite set:

0] 0 _—
NOANH.=

8a
N\ NS0 o

Dv4w(l) (N(O)w”('_lg +N(0)w 1) +2N(0)w;é1y)) 0

(8b)
Né%)z—l'N%),y_— (N:f:uz) +N(u,)y) (8 )

N@AANEG ~— NN ) ’

Dvw®— (N Ow,2+ NPw,+2N G5
= (N@+NE w8+ NP +N O,
NGNS 6
N:fr‘i,)r—l'Ngy),y:_

@NEI+HNE2 NG
N@PAND=—@CN N5 A+N G,

Dvw®— (N 9w,8+N 0,5 +2N Gw, 3
— (N (2) +N(11)) ;:(cs.:z) + (N (2) __l_N (ll))w”(/f);l)
+2(N (2) (11) )w”(:?g_'_(N 4) _|_2N (13))w (1:2
+ V2N, G+ 2V Y
NG +NZ)w,y  (8f)

If the odd powers in the series for » and » and
the even powers in the series for w had been
included, they would have formed a set of homo-
geneous differential equations with homogeneous
boundary conditions (which would not have
coupled with the terms originally included) and
therefore would have vanished as previously
indicated.

Equations (8a) and (8b) can be identified as
the usual (linear) small-deflection equations. In
these equations the loading terms (the N©
forces) are independent of the deflection w.
Solution first of these equations and then of
some of the succeeding equations permits a study
of the behavior of the plate at buckling and then
beyond into the large-deflection range (provided
the series behaves properly). At present the only
ways available for determining convergence are
by a comparison of the results obtained from
the various approximations and by comparisons
of the highest approximation obtained with other
methods and with experiment.

COMPRESSION PROBLEM

Solution of equations (8) for a postbuckling
problem of rectangular simply supported plates
in compression is now considered. The plate
has a length @, width b, and thickness hA. The
origin of coordinates is taken at one corner, as
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indicated in the following sketch:

Ty

b

SOLUTION

The problem to be solved is the postbuckling
behavior of a rectangular, simply supported plate
in longitudinal compression with edges constrained
so that the displacement of each edge in the plane
of the plate is uniform. The simply supported
edge condition is selected as a practical example;
with the in-plane conditions chosen for the present
analysis, it also leads to much simpler results
than other types of edge support. For other
types of edge support there is no conceptual
difference in the method of solution.

The boundary conditions considered can be
written:

Zero deflection

w(0,y) =w(a,y) =w(z,0) =w(z,b)=0
Zero moment
Wy22(0,Y) =W,22(0,Y) =W, (2,0) =W, (,0) =0
Constant displacement
y(0,y) =Uy(a,y) =0,5(2,0) =0,5(2,6)=0
Zero shear stress
0,2(0,)=0,2(2,y) =U(2,0) =1,,(z,b) =0

Loaded edges
b
ﬁ (N, dy=—P
Unloaded edges

fo (N, _, de=0

The given total applied load P is equal to or
greater than the buckling load. If for u, v, and
w, the expressions in equations (5) are inserted
in the first four boundary conditions, it is seen
that each of the values of u™, »™, and w™ must
individually satisfy these boundary conditions.
Substituting from equation (7a) into the condition
on the loaded edges gives

@

P=3) Pwen 9)

n=0,2

where

]
PO—— J (N, oo dy

b
@_ __ (2) a1
PO—— [ N+ NPcnaty | )

P‘“:—LD(N;‘”—{—ZN;B))FMdy

.

Similarly, if equation (7b) is used, the condition
on the unloaded edges becomes

f (NDY, o0 dz—0
0
j; (N® 4+ NY, o »dz=0 } (11)

J:)a(N1(14)+2N1513))u=0,bd17:0

.S

For this case there is no temperature rise, and all
the T™ values are set equal to zero.

Equations (8a) can be written in terms of the
displacements »@ and »®. With T® set equal
to zero, equations (8a) become

.04 l—p oy 14w
yzz 1 2 syy 1 2

[(1)
U;:w_‘o

14-u O] oy 1= 2.9 —0
2 "y Yy 2 »zz

Solutions of the above equations for #® and »©@
that satisfy the boundary conditions are

PO a
© = i
u 2)

Em\”
12)
(o)_”P(O)< _é (
UTTER\Y T2
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It therefore follows that

N(O)______Zﬁ
b (13)
NP =N =0
Now w® can be determined from equation (8b),which has the solution
wP =, sin ML in Y (14)
a b
that satisfies the boundary conditions. This solution requires that
2712
(&) +(5)]
PO = (1 5)

mmr
(%)
Thus far, the solutions obtained are identical with the small-deflection solution, where the set of the
various values of P (for each m,n combination) can be identified as the set of buckling loads. The
lowest buckling load is determined by the choice of m and n for a particular length-width ratio a/b.
Note that, as is the case in small-deflection theory, the amplitude w; cannot as yet be determined.

The values of the N may now be found (in terms of w,), and equations (8c) may thus be solved.
Solutions that satisfy the boundary conditions are:

-

w® =

(m‘lr) (’mr)
P® w1 ( ) ( ) w,? sin 2mmz__mm in2m7rx 2nmy
5 g S — = cos —=

Ehb a b

- (16)

(’I’L’II') (m 7r> .

@

0@ — E}"hb (nvr) :l ( b> w,? . 2mry nbvr cos 2’/)’;%23 sin 2nb7ry
b

P

so that

NO f NOv— _@_Ehwl (Wur> Zmry\|

NP 4N =—

Ehw?/nm\°>  2mmrx & 7
T8 \b/)

N& 4N =0

Now w*® must be determined from equation (8d). After substitution of the N’s and w', equation
(8d) becomes

DV4w(3)+ ’U),isx w1<{€;(%r 2 Ehwl <m7r> (mr)]} sin xsm—

b

It should be noted that sin —a@- sin 11%;/ is a complementary solution to equation (18), and a
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term of this kind appears on the right-hand side
of this equation. No solution to equation (18) is
possible that satisfies boundary conditions of this
problem unless the coefficient of this term on the
right-hand side of this equation is zero. (A more
formal discussion of the conditions for a differ-
ential equation to have a solution satisfying
boundary conditions is given in ref. 14.) Thus,

{57 G ) T

This relationship provides the means of deter-
mining the value of w;. If the trivial case w,=0
is ignored, the amplitude w, is found to be

ma\2
16P®@ (7)

GG

where w; cannot be determined as yet, and

(19)

With the information that has been presented
so far, a first approximation to the solution of the
large-deflection behavior of the plate may be
written if values are assigned to the perturbation
parameter e  This first approximation would
include all powers of e through the second. The
values chosen for e¢ and the results in equation
form for the first approximation are indicated
subsequently.

Upon satisfaction of equation (19), equation
(18) may be solved directly for w® to give the
following solution which satisfies the boundary
conditions:

mmx nw mwxr . 3N
w® =w, sin — sin y—l—w“) MAL Gin 2TY
o b
3amwrxr . M
+w sin smTﬂJ (20)

Ehw1 (m)

@
Wis

)

Ehfw1 <mr>

R (Ca G D]

The expression for the N9® and N may now be found in terms of ws.

Thus equations (8e) may be

solved. From equations (8e) solutions that satisfy, the boundary conditions are

vt () N e { o[ () = (5) Jroa [ () = () T} sn 25
ST ) o G i o () e
( >—“ (mr) 2m7r:c 2n7ry w, wd mr nw (mr) (mW
+wgd 0 +— i 1+ =
T = e
sin 2";” cos 4”b”y+w1w2;m7r Wr) <mr) ) (mr> dmmr  2nmy (21a)

537772—60——2

[T [



8 TECHNICAL REPORT R—40—NATIONAL AERONAUTICS AND SPACE ADMINISTRATICON

P D) Tt [ () T

@b, (ar\: (ma\ . damy wm o
]16n7,- ({) —u (f)]SIn b7"y_|_ 81b7',' wy—w® +3wd —4 (77‘) (wé?"—l—wﬁ?)

CoV (5] ] oms e [ oy (5 00 (,;,:)2}
L) +(5)] b [+ ]

mm <n7r> ]
@ .
21r;7rx sin 4y +w1w31 nwr 1 +<m7r r 4m1rx " 2nmy

(22a)

cos ) > |:<2m 2]2 sin —== (21b)
so that
N® 42N = —?—-E—Liwl (%)2 (ws—wff) cos n b“y-l-wfé) cos 4—ngry
D L) nw o [ NV
4(w‘ ( ) 2mmz 2n7ry 4wis ( ) 2m7r:c S47@1ry
ey [+ )T b
+ nmr
(3)(’”"")
_ 4m1rx cos 2nmy
EEEGINE
J
p

4(w{%’+wé3’)< )

2m7rx 2nwry

2
NP 4+2NM = '—_E_Z_wl (ﬂ%’) (wg—w§) cos 2m7rx+ wiP co

a [( =]
wiP (m) E y (3)( s ) 3
mwz mry mrz nry
DY 3 C a ° o - . 05 } (22b)
[T [T )
Ehw; (mmn 2 (W@ +wfP in 2m z 2n
NO+NP+NE =— —5— —t aﬂ- il [(mgr) ‘|‘< 31;2:|2 UL b7r?J
wiy mnx . 4nmy WY dmrz . 2nmy

T e

The differential equation (8f) for w® is now completely determined except for w;. The condition
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that this equation has a solution for w® de-

termines the value of w; in the same way in

which the condition that equation (18) had a

solution determined the value of w;. Thus,
16P®

("”") @ 4 nw)*w(z) (ﬂ)z
3Ehbw,
<m1r> +<n7r) 16P® (mw)
" 3ERbw?

The second approximation may now be written
if values are assigned to the perturbation param-
eter e The second approximation would in-
clude all powers of e through the fourth. The
formal solution of the set of equations (8) is not
carried beyond this point for the compression
problem.

Nothing has been said so far in this section
about the values that the parameter e assumes
except that e is arbitrary. Since P is the known
total applied load, the magnitude of which has
not been specified except to say that it is equal
to or greater than the buckling load, ¢ may be
related to P as in the following equation without

(23)

Wz=

form for the second approximation:

loss of generality
, P—P,
€ ==
P,

(24)

where P, is the buckling load which can be
identified as equal to P@ for given values of m
and n. With P9©=P,, equation (24) can be
written

P=P®4g&p®

Equating coefficients of equal powers of e in this
equation with that of equation (9) yields

PO_pPO®
P™=0 for n=4

Alternatively, if € had been related instead either
to the center deflection, to the shortening of the
loaded edges, or to some other characteristic
property of the plate loading, then that relation
would determine the P™. In any case, the final
results would be unchanged.

In the following relationships, results for the
deformations and loads are written in equation

. 2 ke B—un® . 2mrx_ B* . 2mmz 2nary
u——3(1—u2)7{4D1r a >+ ( )+ Amm STy 41n7r51n a8
. ; 1 _ . 4
+64[ aﬂz(——— + 3(ﬁz—un)+w(3)(3;32—yn2)]smz"‘;” Ry Wi (36°—un?) sin mre
— — ) | = AP (NE— B 2mmx 2nm
s (ws—w@+3w<3>——<w;s>+ws>> e ) sin 22 cos 2
— 4An?— uB? .2 4n
——25“_ wiy (1 n(‘(gzz_ 1 ’;)62) sin 277 ¢os I:ry
B zw _62[4/32+(2+u)n2])- 4mrz 2n1ry:|
— o it (1 @)’ sin —== cos — (25a)
L uPb y 1 Jn2y 1\, n*—uB . 2nmy n 2mwx . 2n1ry:|
v —3(1—;;2)7)—{ 4Dnr? +5 I:E b 2 anr ST 7% Mg
2n1ry 4nmy

+6* | wan’ —-——>+

[ws(n*—uB?) +wiP (3n*—pp?)] si

g T (02— ) sin

482(B2— um? 2 _ 4 2 9 5
_n (ws TH 4308 — (@D +5P) 5( é f o )) mry 5 (1_ ZLBZ_:— (4 v;l;)ﬁzt)ﬁ ])
cos 2721rr sin 4n1ry " T® <1 _*_32(514'1[;(2:7;;22)) oS 412790 sin 2ngry:|} (25b)
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xr . N
Sln'Ty

2hd I: mrr
=-—=——=| sin
V3(1—p?)

—_ . Mmmr . Nmw mwrr . 3nmw
82 (w3 sin —- sin y—l—w‘§’ sin — sin 5 Yy
. mvrx i T
+w? sin y):l (25¢)

N,= _P_Dr {26252 cos ——~ 2nmy

b b

+426t | @) cos 254 cos Ty

4 4 3 (3)
nt(w® +ws 2mmx cos 2nwy

T g b
An*wd cos 2mrxr _ 4nmy
(B dn?)? a “®7

n ,w(3)

4 2 T
A+ 2)2 08 77;71'{13 i y:l} (26a)

2
%72'-— {271-262 cos 2

mnx

Ny=—

dmmx

+4n25* I:(Eg,—ﬁﬁ’) cos 2”:“
484w +w) 2mwx 2n
( ﬁzfl—nz)z cos == cos l:r'y
pw 2m7rx dnmy

E+an?)? % g
48w JAammz 2n1ry:|}
a b

(4ﬁ2 2)2
Dr* [2@{2’ +wf)
b2 (62+n2)2
wd i 2mr . Anmy
ERCEE b SR

ammz sin 2'nzry ] (26¢)

+w cos

-+

CcOoSs

(26b)

2mrx . 2nwy
1n

sin
b

Npy=—88Fr* =5

(3
WY

(462 2)2 .

where

_(52+n2)2__3(1—ﬂ2) 2w’
g4nt 4 R

mb
a

B=

= 3 By + i)
=

2 Bt+nt

64
'LLI(?: :(62+9n2)2_

(B*+n?)?

4
6 n

31 =(952+n2)2—9(62—l—n2)2

In order to obtain the first-approximation results
from the equations given for the second approxi-
mation (eqs. (26)), simply omit the part of w that
has the coefficient 8° and the parts of the other
results that have the coefficient &*.

Several results of interest can now be written
down in second approximation. To obtain the
first approximation from these results, omit the
highest power of & appearing in each expression.
The total shortening A is the sum of the inward
displacements at each end. Since u is positive in
the positive a-direction,

A=u(0,)—u(a,y) 27)

Therefore,

3(1—u?) b*A_ Pb

62ﬁ2
™ Ra 4r 2D+

+5wsB° (28)

The extreme-fiber bending strain at the crest of a
buckle e is given by

h a b
€zb=i§’w;m 5w’ om

£ B3 (1—w?) [ 1+ 8(s

—wf +9wP)]  (29)

7!'2 hg €xp—

The extreme-fiber compressive strain at the crest
of a buckle ¢, is the sum of the middle-surface
strain and the bending strain just given. The
middle-surface strain may be obtained in two ways
from the results for deflections and stresses just
given. It may be obtained by differentiation of
the deformations (egs. (4)) or by a calculation in
terms of stresses (egs. (2)). The results obtained
will be different for a given approximation de-

 pending on which method is used. For example,

for the second approximation, the sixth power of
e would appear in the middle-surface strains if
equations (4) are used, while only the fourth
power of € would appear if equations (2) are used.
Of course, in the limit the results will agree. The
most consistent way to obtain a given approxima-
tion would be by equations (2), since powers of ¢
appear which are consistent with those appearing
elsewhere. This method yields,

2= Eh[ <2m on ’J‘Ny(2m2):|+e”
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Therefore,

—u?) b2 1 _
3(11r—2”) h? 52024%2%—‘2' (B°—pn)6*+8* [23%;3)
4 BY (DD Lp®
2P — (8 i) By LA )P L)
Lt —uBYBR | (n'—4up)B P 3(1—p) b
i (B2+4n2)2 (462+n2)2 J T P hzézb
(30)

The effective width b, as defined, for example, in
reference 15, may also be of interest:

P a

b=Ean

Substituting from equation (28) for A results in

Pb
ég__ 47°D
b Pb

2
ooyt ST

31)

RESULTS

Before the equations just derived can be used,
the number of buckles along the length m and the
number of buckles along the width » must be
determined. At buckling the small-deflection
(linear) theory determines as the values of m and
7 to be used the ones which yield the lowest
buckling load. Load-shortening curves are shown
for both the first and second approximation in
figure 1 for plates of various finite length-width
ratios obtained by using the values of m (n always
equals unity for this problem) for lowest buckling
load. In addition, load-shortening curves are
given for other values of m which intersect with
these basic curves for the range plotted.

The intersections of the load-shortening curves
indicate possible changes in buckle pattern. For
finite plates, changes in buckle pattern are often
observed experimentally, and they have been dis-
cussed on a sound theoretical basis in reference 16.
Reference 16 presents an analysis of a simply sup-
ported three-element column connected by linear
torsional springs and supported laterally by non-
linear extensional springs. This idealized structure
duplicates many of the important properties of the
plate; for example the load-shortening curve asso-
ciated with the symmetric buckling mode inter-
sects with that of the antisymmetric mode. The

3 ~ 7/ /’
ez -
/7‘ e
m=tesz=d0r”
\\//,
S
4
/,
/
2 L P/
s |\ /S T Ist approximation
4xep 2nd approximation
l —
—>4 e
-
4 b
- a fe—
L ] | (0)1
0] 2 4 6 8
30-4%) 52 A
T2 p2 @
(a) a/b=1.

Ficure 1.—Nondimensional load-shortening curves of
rectangular simply supported plates in compression.

— 7 7
3 S
7z
,

sz 7
70 7

Pb

————— | st approximation
ar2p

2 nd approximation

I ZRR)

)

]
o] 2 4

3(1-p%) p2

T2 p2

(b) a/b=1,5.
F1icure 1.—Continued.

=
@

Q>

analysis also yields a transition curve (which repre-
sents a buckling configuration which is neither
symmetric nor antisymmetric) from the symmetric
buckling configuration to the antisymmetric buck-
ling configuration. Change in buckle pattern
starts to occur at a loading corresponding to the
intersection of the load-shortening curve for the
symmetric buckle pattern and the transition curve.
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A /e I'st approximation
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2 nd opproximation
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e
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—> b fe—
—> a fe—
1 | | (C) J
0] 2 4 6 8
2
3(-4%) 62 A
T2 h a
(c) a/b=2,
Frcure 1.—Continued.
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2
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Ficure 1.—Continued.

Whether this change is smooth or abrupt depends
on whether the transition curve is stable or un-
stable, respectively. Whether the transition curve
is stable is shown to depend upon the stiffness of
the nonlinear springs and upon the method of load-
ing (controlled load, controlled shortening). How-
ever, the load (and shortening) at which the buckle
pattern starts to change (secondary buckling) is
independent of the method of loading. Secondary

3~ .
rd
”
,/
ol
PZ ----- I'st approximation
4r<0 2nd approximation
1
A . E
! I I el
¢} 2 4 ) 3
3(-4%) 02 A
re he a
(e) afb—e

Ficure 1.—Concluded.

buckling always occurred for loads and shortenings
greater than those given by the intersection of the
load-shortening curves for the symmetric and
antisymmetric equilibrium configurations. In or-
der to determine the stability of an equilibrium
position for the column problem subject to a cer-
tain type of loading, it was necessary to examine
the second variation of the total potential energy.
It would be expected that such a procedure would
also be necessary for plate problems.

Changes in buckle pattern are not calculated for
the plates of finite length-width ratio for the pres-
ent analysis because of the extensive calculations
required. However, preliminary calculations have
indicated that for length-width ratios near unity
the change in buckle pattern would be rather
abrupt; whereas for higher length-width ratios
changes in buckle pattern would be continuous or,
at least, would be less abrupt.

For an infinitely long plate the number of
buckles along the length is infinite (m— ), but
the ratio of the number of buckles to the length
m/a is finite. The inverse of this ratio is the
buckle length a/m, which for infinite plates would
be expected to change continuously as the loading
progresses. (See refs. 7 and 8.) The buckle length
for a given shortening would be such that the load
is a minimum. Values of the ratio ﬁ:%b for
minimum load and the corresponding values of
load and shortening are given in table I. These
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TABLE I.—BUCKLE WIDTH-LENGTH RATIO 8
AND CORRESPONDING LOADS AND
SHORTENINGS FOR AN INFINITELY
LONG, SIMPLY SUPPORTED PLATE
IN LONGITUDINAL COMPRESSION

1st approximation 2nd approximation
Pb
WOl (suzmbal g |30-pa
™  ha 72 h?a
1 1 1 1 1
1. 05 1. 045 1.10 1. 045 1.10
1.33 | 1.20 1.73 1. 20 1.74
1. 61 1. 30 2. 41 1. 31 2. 46
1. 95 1. 39 3. 27 1. 42 3. 42
2. 25 1. 45 4. 05 1. 51 4. 37
2.68 | 1.52 5.20 1. 64 5. 88

values were used to plot the load-shortening curves
for the infinite plate in figure 1(e). Note that the
results giving the lowest load for a given shortening
for length-width ratios 2 and 4 (figs. 1 (c) and (d))
do not differ much from the infinite-plate results.
Indeed, the infinite-plate curves form an envelope
for the finite-plate curves.

An indication of the convergence of the results
of such an analysis is the agreement between the
last approximation and the immediately previous
approximation. From figure 1, satisfactory con-
vergence is indicated in the range plotted since the
curves of the first and second approximation lie
reasonably close together. Convergence is better

for nearly square buckles (lndé: 1) than for higher

values of @_b
a

EXTENSIONS TO OTHER PROBLEMS

In the foregoing example problem all of the
differential equations were solved by inspection.
Of course, for some other problems, it might be
necessary to solve the differential equations by
other methods. The steps in the analysis of a
given problem are essentially independent of the
method of solution of each of the differential
equations involved.

For the example problem the arbitrary param-
eter ¢ was taken equal to the square root of
(P—P.;)[P.,. This parameter could just as well
have been related to the shortening or the center
deflection. For other problems it may be conven-
ient to relate the arbitrary parameter to some
other property. For example, in a thermal buck-
ling problem (as is to be shown in a subsequent

section) the arbitrary parameter may be related
to the average rise in temperature beyond that
required for buckling.

In certain problems such as the postbuckling
behavior of a rectangular plate with initial eccen-
tricities or with lateral load, similar expansions in
series do not lead to linear equations. For such
cases other methods must be used. In some prob-
lems for which similar expansions do lead to linear
equations, there may be ranges where results from
these equations do not converge rapidly. The use-
fulness of the method used or the set of linear
equations obtained in this analysis depends then
to a great extent on the type of large-deflection
problem for which a solution is desired.

COMPARISONS OF COMPRESSION THEORETICAL
RESULTS WITH OTHER RESULTS

In this section the theoretical results of the
example plate compression problem are compared
with the best available previous theoretical
results satisfying the same boundary conditions
and with experiment.

COMPARISONS WITH THEORY

For the square plate buckling into a square
buckle (m=1) both Levy (ref. 9) and Alexeev
(ref. 13) obtained exact solutions. For a square
plate buckling into two buckles (m=2), only
Alexeev obtained an exact solution. For the
range shown in figure 1, the present results
for the second approximation agree with the
results of Levy and Alexeev. The analytical
expressions of the present theory should be more
convenient, to use, since they are given in simpler
form.

For plates of various other finite length-width
ratios, previous results are available for the
initial slope after buckling. As can be seen from
figure 1, for some length-width ratios used,
straight-line load-shortening curves based on
these initial slopes would give unduly higher
loads for given shortenings everywhere in the
postbuckling range except immediately after
buckling.

The best available previous results for the
infinitely long plates are those of Koiter (ref. 8).
As shown in figure 2 the results of the solution
of Koiter and the solution of Marguerre (ref. 6)
follow the curve of the first approximation of the
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3 Koiter (ref. 8)---—,¢%
P
-
Marguerre (ref.6)-—"""" ¢
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————— t st approximation
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Ficure 2.—Comparisons of theoretical nondimensional
load-shortening curves for an infinitely long simply sup-
ported plate in longitudinal compression.

present theory in the lower part of the post-
buckling range. In the upper part of the range
Marguerre’s solution continues to follow the
first approximation whereas Koiter’s solution
deviates slightly from the first approximation
in the direction of the second approximation as
shown by the dotted line in figure 2. The results
of the second approximation give lower more
accurate loads than previous results.

COMPARISONS WITH EXPERIMENT

To obtain simply supported loaded edges is
impractical in laboratory experiments. The
experimental results were therefore obtained for
panels subject to “flat end” loading which re-
sults in almost complete clamping of the loaded
edges. However, if the panel tested is long
compared with its width (say, of length-width
ratio 4 or greater), the size and shape of the
buckles near the center are almost unaffected
by this clamping. The experimental results
which are compared with theory are for panels
that have a length-width ratio of at least 4.
Hence, at least certain of the experimental values
obtained should be directly comparable to the
simply supported theoretical results. As stated
in a previous section, the theoretical results for
length-width ratios 2 and 4 are not very different
from the results for the infinite plate. Thus,

the experimental results may be compared to the
theoretical results for the infinite plate. Such
comparisons are shown in figures 3 to 6, which
will now be discussed in detail.

A comparison with theory is presented in
figure 3 of the experimental load-shortening
curve for a test (described in the appendix) of a
plate supported by the multiple-bay fixture.
The experimental curve shows abrupt changes
corresponding to abrupt changes in buckle pattern
from 5 to 6 to 7 to 8 buckles while the theoretical
curve, which is based on continuous change in
buckle pattern, is smooth.

Also shown is the load (%aﬁ) when strain

gages at the crest of a buckle indicated the plate
material had been strained into the plastic range.
The type of changes of buckle pattern obtained
with a hydraulic-type testing machine is similar
to that described for a controlled-shortening
type of loading in reference 16. In consideration
of the practical difficulties of measuring total
shortening, such as how to account for the bend-
ing of the testing-machine platens, the present
agreement between experiment and theory is
good.

Bending strains at the crest of a buckle for the
same test are plotted against load and compared
with the present theoretical results in figure 4.
Again the abrupt changes in the experimental
results do not appear in the theoretical results.
The agreement between theory and experiment
is good.

3~
Elostic | Plostic "
! e 7
1 e S
Z o
P
2t S
Pb //'
ar2p m=5/
— -— Experiment
=
------- I'st approximation
o } eory
2 nd approximation
! L ! I ]
] 2 4 6 8 o)
3(-42) p2 5
72  p2 0

Ficure 3.—Comparisons of nondimensional load-shorten-
ing curves as given by (elastic) theory and experiment.
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[ et I'st approximation

. } Theory
2 nd approximation

1 ] !
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3(1-u?) p2
w2 7‘2— €xb

L

Ficure 4.—Comparisons of bending strain at the crest of
a buckle as given by (elastic) theory and experiment.
(v=1/3.)

In figure 5 the experimentally measured strains
at the crest of the buckle of four stiffened panels
described in the appendix are plotted against
stiffener strain and compared with the present
theory. For this set of tests no changes were
observed in the number of buckles from the
number which appeared at initial buckling. In
the light of previous discussions this is quite
surprising. However, it is quite possible that
the centrally located buckles could have changed
shape as the load progressed. Buckles at the

6 —

Experiment
Elastic  Plastic

...... I'st approximation

. }Theory
2 nd approximation

F €xo0

Ficure 5.—Comparisons of extreme fiber strains at the
crest of a buckle as given by (elastic) theory and experi-
ment. (u=1/3.)

loaded edges could have increased in length while
centrally located buckles decreased in length.
Also the edge restraint offered by the stiffener
probably decreased as the loading progressed and
thus allowed the buckles to become wider. Both
of these effects would contribute to smooth and
continuous change in buckle pattern similar to
that of the infinite plate. From the comparison
of the results shown, it is evident that although
the data show scatter at buckling, the theory
for simply supported plate gives strains at the
crest of the buckle that agree with practical
experiment in the postbuckling range.

In figure 6 buckle depths measured from a series
of tests at Langley on panels with hat-section
stiffeners are plotted against stiffener strain and
are compared with theory. Thereis a considerable
scatter in experimental results. However, it may
be stated that in the postbuckling range, theo- -
retical results for the depth of buckle of simply
supported plates agree with experimental results
on such practical stiffened panels.

TEMPERATURE PROBLEMS

When a simply supported rectangular plate with
unrestricted in-plane displacement of its edges is
subjected to a uniform temperature rise, the plate
simply expands and does not buckle. However,
when the in-plane displacement of the edges is
restricted, the plate may buckle. Three sets of
boundary conditions restricting the in-plane dis-
placement are considered in this section:

Experiment

t st approximation

- }Theory
2nd approximation

w
(%)
Ficure 6.—Comparisons of buckle depth as given by
theory and experiment. (u=1/3.)

] L
4

3,1
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(1) Zero displacement normal to the short edges,
uniform displacement normal to the long
edges, all edges free of shear.

(2) Zero displacement normal to all edges, all
edges free of shear.

(3) Zero displacement of all edges.

Except for the third problem the solutions are very
similar to that of the compression problem. The
solution of the following infinite plate problem is
the limiting case for both the second and third
problems indicated above, and it is considered
separately.

(4) Infinitely long plate with zero in-plane dis-
placement of all edges.

First the various solutions are presented in
equation form; then curves similar to the load-
shortening curves of the compression problem are
presented and discussed. In all the problems the
material properties are assumed to be independent
of temperature.

SOLUTIONS

Problem 1: Zero in-plane displacement normal
to the short edges.—With the origin in the plate
corner, the boundary conditions for zero in-plane
displacement normal to the short edges can be
written:

Zero deflection:
w(0,y)=w(a,y)=w,0)=w(,b)=0
Zero moment:
W,(0,Y) = W,22(,Y) =10, (2,0) =, (2,) =0
Zero displacement:
%(0,y)=u(a,y)=0
Constant displacement:
,5(2,0)=0,,(2,0)=0
Zero shear stress:
2,2(0,9) =0,2(@,Y) =%y, (2,0) =2,y (2,6) =0

Unloaded edges:

| @, o=

In order to apply these conditions to the set of

linear equations (8), substitute in the boundary
conditions the expressions (5) for u, », and w.
It is seen that 4™, »™, w™ must individually
satisfy all but the last of the boundary conditions.
The condition for the unloaded edges is equiva-
lent to equations (11). The temperature rise 71" is
taken to be uniform and therefore the 7™ are
constants.

Solutions of equations (8a) for #® and »©@ that
satisfy the boundary conditions are

w® =0
32
?)(0) —(l—l—ﬂ)aT(O) <.y_é ( )
so that .
Nz(O):—-EhaT(m
N,,(O):Nzy(mz() (33)

The solution, except for elementary changes, is
seen to be identical to the solution to the com-
pression problem. For this solution, the param-
eter e will be related to the temperature rise 7" as
in the following equation (with no loss in gen-
erality)

, I'—T,

= T (34)

where 7T,, is the temperature rise for buckling
which can be identified as equal to 7@ for given
values of m and n. It follows that

S (101
)

T®™ =0 for n=4

and

The solution to this problem can be adapted
from the solution for the compression problem
(eqs. (25) and (26)) as follows:

1 .
(1) Omit 5—5 terms in .

(2) Change the coefficients of the 53

————> terms

in » by:

3(1+p) (1— )b
? [

(a) Replacing —p 411_21) by
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&%n? 82
(b) Replacing 35 by B (n?+ uB?)
(¢) Replacing 8*wsn? by §ws(n2-+ uB?)
(3) Replace t-he—%) term in NV, by

Dr? (12(1—#2) b?

- el — 23252—4325%3)

(4) Redefine the parameters % and w; as follows:

%_2_“‘_) ]bﬁ 62__ (62+n2)2

3ﬂ4+7lr4

Ted Bwd +n'wsd
T2 3B +nt

™

5=

Problem 2: Zero in-plane displacement normal
to all edges.—With the origin in the corner as in
the previous problems, the boundary conditions
for zero in-plane displacement normal to all edges
can be written:

Zero deflection:
w(0,y)=w(a,y) =w(z,0)=w(z,b)=0
Zero moment:
W,22(0,Y) =W,22(@,Y) =W, 1y(%,0) =W,y (2,b) =0
Zero displacement:
u(0,y) =u(a,y) =v(z,0) =0(z,b) =0
Zero shear stress:
0,2(0,y) =0,2(,y) =1,4(,0) =1,,(z,b) =0

These conditions must also hold for the values
u™, »'”, and w™. Again the values of T™
are constant.

Solutions of equations (8a) that satisfy the
boundary conditions are 4@ =»=0 so that

N§°)=N§0)=_ﬂ aT©
1w (36)
N9=0

Again it can be seen that the solution except for
some elementary changes is identical to the
solution for the compression problem.

As in the previous temperature problem, let

2___T'— Tcr
‘T T,

and it follows that

ouca(e=yay])

2) __ 0
TO_TO_T,

T™®—=0 for n=4

The solution to this problem may be adapted
from the compression problem (eqs. (25) and
(26)), as follows

(1) Omit the (g—-l terms in u.

2
(2) Omit the 5—% terms in v.
(3) Replace the term—é-J in N, by
12(1 b?
b2 (T;HL) b ar

2 2 2 2
—25 L g Blt‘::j %)

(4) Insert following term in N,:

12(1+u) b

b2 7T2 h2 T

2 2
g5 —Huﬁ 4t -I—/u[z_ @)
1—p? 1—p

(5) Redefine 6, w$, ws, and w§ as follows:

BOED Vot @ty — (e

(38— uz) (6*+n*)+4usn?
64
8n*(B+9In-)

1340’413) + 4_ (3)
—p?) (B*+n )+4/.¢.B“’n2

F*=(1—n)

=) __
w1(3)_

3 2

T — w
T 8B (967 )
Problem 3: Zero in-plane displacement of all
edges.—With the origin in the corner as in the
previous problems the boundary conditions for
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zero in-plane displacement of all edges can be
written:
Zero deflection:

w(0,y)=w(a,y)=w(x,0)=w(r,b)=0
Zero moment:
Wy25(0,) = ,22(a,y) = W,4, (2,0) = w,, (2,0) =0
Zero displacement on all edges:
u=0=0

These equations must also hold for the values
u™, 9™ w®™  Again the values of 7™ are
constant.

Solutions of equations (8a) that satisfy the
boundary conditions are 4@ =p®=0 so that

EhaT®

NO=N©O=_
v 1—u (38)

NG =0

The solutions for w® and 7 are identical in
form to the previous case

mmx nw
w=w, sin —— sin by

)] o

(39)

for the unknown £ and 4 are

©

=2 Z ai, sm—a—sm 2

i=2,4j=1,3

=> i b;; sin 7 s1n]1ry

i=1,3 j=2,4

The solutions for #® and »® are not obtainable
as easily as in the previous cases because the
boundary conditions for this case cannot be satis-
fied by a few simple trigonometric expressions.
If the solution is taken in the form

2’;” (eos 1) ]
o= oy (s 1) sin 2

(41)

the equations giving # and 7 which are obtained
from equations (8c) are
2p, mm <n1r> 2m1r:c

2#n7r<m ) l:-y

(42)

u(2)=%f[£(x) )+ m i

1— 1
E;zz+TME;vy+ _;” Myzy=

14u
) E;z‘u‘}“ﬂ,w'l‘ ) 77;22

with boundary conditions that &=#%=0 on all
edges. In addition ¢ is antisymmetric in the
z-direction and symmetric in the y-direction and 7
is antisymmetric in the y-direction and symmetric
in the z-direction. Fourier series which satisfy
boundary and symmetric conditions term by term

Jmy
(43)
b

Usmg these series for £ and # in conjunction with the Galerkin method leads to the following
pair of linear algebraic equations which determine a;; and b,

8(Ltp)b ijrs

RIOR ]

ij
@i=1,3j=2,4 (

[ 5 PSS Sy

ij
7r @ i=24j=13 (7'

7‘2—'i2) (82—]2

2
) S’u W;n 07r,2m (r=24, . ;s=1,3,...) |
Sunm?b
.72)=-ZLE.7—663,27L (7"21,3, e 8:2’4’ . ')
(44)

where §,2, and &2, are the Kroneker deltas, which are defined so as to vanish if the subscripts.

are different and to equal unity if the subscrlpts are the same.

The number of different a;; and

bi; required for convergence will depend on the buckle configuration considered.
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If, for example, the square plate that has buckled into one buckle is considered (m=n=a/b=1),
the following values for the most important of the coefficients a;; and b;; are obtained:

3y =b1,=0.2202(8/a)
3= b33,=0.0595(8u/a)
95=b5,=0.0187(8u/a)
37=b7,=0.0086(8u/a) J

(45)

Once the values of a;; and b;; are found, the solution may be continued

e [ o] <l—cos ”y)+ (%) (1—cos 22 )t |

(2)
N® 4+ Ngv = E{sz_T Eh ’w1 l: >( (m )(1_ oS I:ry>+"7;y+”$w] f (46)
NG+ Ngp=Lh U0 0

2(14-p) 8 J
and w; may be obtained from

b (ra
I [T Ny, B+ (N NG, 2N+ NG o, ] sim T sin "5 dady=0

The solution for w, in terms of the a; and b,; is as follows:
S CXCISUCROIGED)
SO (Y] 3 =B [(F) + () ] 2t
+|:<m_a7r>2+<7%>2:| 4777"' j:,ajgigz,lnnjfﬁ-l_ b 5 @Zbl v )} (47)

The first approximation may now be written if
values are assigned to the perturbation parameter
e. The solution for this problem is not carried

written in equation form for the first approxima-
tion, as follows:

beyond .the first approzlcimation because of the 2 Ka [ B . 2mmz onry
complexity of the analysis. uzm 2 dmw R T, cos — —1
As in the other temperature problems, there is , ;
no loss in generality if % :75 .Z“ jzl.?, as, sin 7 sin JW?I:I (498)
i=2,4j=1,
T—T,
€2= - cr
T. 2 h? .| 2mwx . 2nmy
. V=75 ?6 I cos ——=—1 }sin 3
and it follows that 3(1—w) T
TO_TO_T, 48) + %1% i"s %4()1, sin %E sin .77(:_2/ (49b)
1=1,37]=2,
T™W=0forn=4
. = ,_2h_6_,_ sin mm sinn%y (49¢)
Results for the deflections and stresses are V3(1—pu?) a
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N ___{_19(1-!—#) b
7r

. 28% ) 2nwy . 2mmx
Tl——y“’[ﬂ (l—cos 5 )-}-un (1—cos 7 )

bZ © © g
— > 2 iy cos T2 sm] Y
ami=3,4j=1,3 a b

+M Zm) iybusm—coswy]} (504a)
=2,4

i=1,3

Dr? 12(1 b?
L L

22
+ i [n2<1—cos2m7r

_#2

w)_{_#ﬁ? (1_ cos 2'nb7ry

1
b <& v Jmy
+;Z > yb”sm—a—cos 5

i=1,3 j=2,4

@ o

___D7r 82 b hd er
Npy="5- 27 T \7 2 2412 ja”smTcos e
2 © ©
+¢—17_r 1213 1224 by, cos ™ sin ~> (50¢)
where

—(—) [ 2 B (e ey caved

+[3 (B 20840 ) — 458"+ un?) 7%]213 Gon, 1

b = 1
—A4An(n’ - uB?) - i§3 i2 ;+(ﬁz+n2)
.7
<4:37r “ 2m; 4m +4 _Zbl2n 4 >:|

(51)
and a,; and by, are given by equations (44).
Problem 4: Infinitely long plate with zero
in-plane displacement of all edges.—The next
problem considered is the postbuckling behavior
of a simply supported infinitely long plate subject
to a uniform temperature rise with zero in-plane
displacement of all edges. Only the buckle pat-
tern with one buckle in the long direction (cy-
lindrical buckling) is examined. Cylindrical buck-
ling occurs for the lowest buckling load, and no
change in the buckle pattern is indicated.
For this case the deflection w normal to the
plate and the displacement » may be considered

to be functions of y only and the displacement u is
zero everywhere. With the origin along the
lower edge of an infinite plate of width &, the
remaining boundary conditions may be written

Zero deflection:
w(0)=w(b)=0
Zero moment:
W,5(0) =W, (5) =0
Zero displacement:
2(0)=v(b)=0

In order to apply these conditions to the derived
equations, insert expressions (5) for » and w.
It is seen that »™ and w™ must individually
satisfy these conditions. Again the temperature
rise is uniform and therefore the values of 7™ are
constant.

Solution of equations (8a) that satisfies the
boundary condition is (u=0):

p@O=0 (52)
so that
Nfcm:N;O):—‘IEThaT(O) 1(
M (53)
Ng=0 J

For this problem equation (8b) has the solution
nwy

wD =, sin 5 (54)
that satisfies the boundary conditions. This
solution requires that

D (1—/..1,)(7)/71')2
o _— nm
=% s (55)

So far the solutions obtained are identical to the
small-deflection solutions where the set of values
of T® (one for each n) can be identified as the set
of temperature rises that would cause buckling.
The lowest temperature rise that would cause
buckling is the one corresponding to n=1. Note
that, as in small-deflection theory, the amplitude
w; cannot yet be determined.

The N® forces may be found now (in terms
of wi), and from equations (8c) the solution that
satisfies the boundary conditions is

2
—% 7% sin —27??/ (56)

@ —
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so that

N® L N — E'h [—(I—I—,u)aT‘”+p (mr)]
NP+ Ny = Eh |: (1+p)al@+ (n’r>] (57)

11
NG+ N =

Now w® must be determined from equation (8d).

J

After substitution for the N’s and w®,

equation (8d) becomes (since w® is a function of ¥ only):

@ @ @ —
wauyl/ + T ”/”

In order that this equation have a nontrivial
solution satisfying the boundary conditions,

o 1aT®
! ’mr) (58)

b
If at this point the arbitrary parameter € is

}T": it follows that

TO—TO_T,
(59)

assigned the value

T™=0forn=4

It can be seen now that there is no contribution of
any other of the set of equations (8); therefore, an
exact solution has been obtained for this problem.
The final results can be written

u=0 h

'”=—<T D(1—p) (ﬂw>>(1+u)asi 20y

Eha onmr b
B
D(1—p) ("—”)
w="\ (1+wea T———mﬁ“)%siny%
P

(60)

N,—— EhaT—puD (”%”)2

Np=0

It may be noted that N, remains at the buckling

Ehwl mr) [—(1 +w)aT ‘”-l—

nr\ . nmwy
(e

value in the postbuckling range.

DETERMINATION OF EFFECTIVE LOAD-SHORTENING
CURVES

For the temperature problems it is desirable to
have curves similar to the load-shortening curves
of the compression problem. The particular ad-
vantage of the load-shortening curve is that the
area under the curve is equal to the strain energy.
Also the intersections of the load-shortening curves
provide a convenient indication of the possibility
of change in buckle pattern. For the temperature
problems considered, a strain energy as such does
not exist; however, a comparable quantity, the
energy (at the final temperature) which is re-
leased when the edge restraints are removed (re-
versibly), does exist. This ‘‘recoverable” energy
is equal to the strain energy of a slightly larger
simply supported plate with edges subjected to
loads equal to the reaction loads at the in-plane
restraints.

The recoverable strain energy is now examined.
If the reaction loads at the restraints are N, NNy,
N,,, and the displacements that occur upon relaxa-
tion of the restraints are % and v, the recoverable
strain energy U is

o ) (53,
+f( "’at>, W +f< "’at),, b ]dt (62)

where at t=0 the plate is unloaded and at t=r the
plate is loaded. Since the final values of % and v
at the boundaries are functions of the temperature
rise T and since the reaction loads are given in the
analysis section as function of the temperature
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rise T it is convenient to change the variable of
integration from ¢ to 7. This may be done since
the strain energy is independent of path. The
recoverable strain energy can now be discussed in
more detail for each of the temperature problems.

For problem 1 of the previous discussion, the
N, and N,, terms do not appear, and, since % is
not a function of y at z=a,

T ou
U—‘ﬁ P (5

b
P=—f (Nx):t:a dy
0

where

At t=0, u(a,y)=aaT and at t=7, u(a,y)=0 so
that if the variable of integration is changed, the
above expression for energy can be written

aaT
U=["" Pi@)...
0
Changing the variable of integration again gives

U=a«

0

T
pPd4r (63)

Therefore, if P is plotted against aaZ or if dU/JT
is plotted against 7" the area under the curve up
to the temperature rise T in question will be equal
to the recoverable strain energy. Obviously, for
this problem dU/dT=acaP.

For problem 2 (simply supported plate subject
to uniform temperature rise with zero displace-
ment normal to all edges, zero shear on all edges)
the NV, terms disappear and u is not a function of
y at z=a and v is not a function of z at y=b.
Therefore,

o= [ [ Nemat] (Z)
+[J;E(Nv)v=bdx] %>y=b}dt

At =0, u(a,y) aaT; v(x,b)=baT and at t=r,
u(a,y)=0; v(z,b)=0. Therefore, the energy ex-
pression can be written as follows:

U= [ [ Weuedy | ...
_LM [foa(N”)”=b dx] d(@)yms

It is convenient to change the variable of inte-
gration to 7

——a ﬁ i [ fo "N )sea dy 42 f (N,), - ,,d:c:l T

(64)

Therefore, if dU/OT is plotted against the tem-
perature rise 7' the area under the curve up to
the 7" in question is the recoverable strain energy.

For problem 3 (simply supported plate subject
to uniform temperature rise with zero displace-
ment of all edges) no terms in the recoverable
strain energy disappear; however, at t=0,

u(a,y)=aaT
v(a,y)=yaT
u(z,b)=zaT
2(zb)—=be T

and at t=7, u=v=0 on all edges, so that, after
change of variable

U——aa["[ [ Noeeatsty, [ M)sesis

+é‘ J; (Nay)z=ay dy+21i J; (Nzy)y=sr 2 dx] ar
(65)

Again, if 0U/0T is plotted against the temperature
rise 7' the area under the curve up to the 7 in
question will be equal to the recoverable strain
energy.

Expressions have now been set down for the
temperature problems which, when plotted, will
serve as effective load-shortening curves. At buck-
ling the small-deflection theory determines the
value of m to be used (n=1). Then if curves for
other values of m intersect they are also of interest.
For the first temperature problem, results identical
to the compression-problem results (see fig. 1)
are obtained except that the abscissa must be
changed to

12(1—p) b

a? e

and P must now be regarded as the edge reaction
load. For a discussion of possible changes in
buckle pattern, see reference 16. It would be ex-
pected that changes in buckle pattern would be
of the type discussed for the controlled shortening
type of loading. Thus, for a finite plate, the values
of m can be taken from figure 1, or for the infinite
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plate the values of B=mb/a can be taken from
table 1.

For the second and third temperature problem
no intersections occur; thus no changes in buckle
pattern are expected from that at initial buckling
so that m=n=1. Results are presented for these
problems in figures 7 and 8. In figure 7 curves are
presented for the second problem for plates of
length-width ratio 1, 1.5, 2, 4, and «. The results
for plates of finite length are based on the first and
second approximation and the results for in-
finitely long plates are based on a separate exact
solution. It is expected that the curves for finite
length-width ratio will become asymptotic to the
curve for infinitely long plates. The results for
the first and second approximation as plotted in
figure 7 lie reasonably close together for the range
of temperature rises shown and, thus, indicate
satisfactory convergence for nearly square plates
and somewhat less satisfactory convergence for
higher length-width ratios. Although the results
presented for simply supported plates indicate
a pattern of one large buckle for all length-width
ratios, it is to be expected that clamped plates
with the same in-plane boundary conditions will
have more than one buckle for some length-width
ratios and may have changes in buckle pattern.

For the third problem the recoverable energy
curve is presented in figure 8 for a square plate

3 r _Z_ ’,/
1
- - .
5|9 LS
NG ol P .
o (5 2 /
g 2
- 2
c
'% ,/- ------- | st approximation
g ,/'V 2 nd approximation
e a
,{>3 s ~>00 - - — Exact (Z '-03)
2
w
b
a
! I ] ]
] 2 4 6 8
. . 12(1+p) p2
Effective shortening, 2 o

Ficure 7.—Effective reaction load-shortening curves for
simply supported rectangular plates with zero edge
displacement normal to all edges and subjected to a
uniform temperature rise.
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F1curE 8.—Comparison of effective reaction load-shorten-
ing curves of simply supported plates with various in-
plane edge conditions and subjected to a uniform tem-
perature riseé,.

along with the corresponding curve for the second
problem. Also presented are the infinitely long
plate results which were presented in figure 7.
The infinitely long plate results satisfy the bound-
ary conditions for this problem as well as the
boundary conditions for the second problem.
From the results obtained, there is no indication
of a change in buckle pattern. Both the square
and the infinitely long plates buckle into one large
buckle. Again, it is to be expected that clamped
plates with the same in-plane boundary conditions
will have more than one buckle for some length-
width ratios and may have changes in buckle pat-
tern. Although figure 8 indicates some difference
between the recoverable strain energy for the
second and third problems for a square plate, a
separate calculation shows that the deflection will
be essentially the same. However, the stress
distributions will be different. For higher temper-
ature rises, the result for finite length-width ratios
will become asymptotic to the infinite plate results.

CONCLUDING REMARKS

A linear set of equations has been derived to
replace the nonlinear large-deflection equations
for plates and is shown to have the advantage of
simplicity of solution, since much more is known
about solving linear partial differential equations
than about solving nonlinear partial differential
equations. However, the linear set of equations
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are subject to certain limitations depending upon
the application desired. It is to be expected that
solutions to certain problems might not converge
satisfactorily, and at the present time it appears
that the linear equations cannot be used to solve
postbuckling problems for plates with initial ec-
centricities.

For the compression problem solved, the second
approximation of the present theory agrees with
exact results for the square plate. Results for
plates with finite, as well as infinite, length-width
ratio indicate that the effects of change in buckle
pattern must be considered. For an infinite plate,
results obtained in first approximation agree with
the best previous results for much of the range, but
results for the second approximation give lower
and more accurate loads for given shortenings.

The comparisons made indicate that, for ex-
treme-fiber strains and deflections at the crest of
a buckle, the present theoretical results for simply
supported rectangular plates with straight edges

free of shear agree well in the postbuckling range
with experimental results on practical stiffened
panels.

For temperature problems a procedure is de-
veloped which permits curves to be drawn similar
to the load-shortening curves of the compression
problem for the purpose of indicating possible
changes in buckle pattern. For a plate with zero
in-plane displacement normal to the short edges
and subject to a uniform temperature rise the
results are identical, except for a few elementary
changes, to the compression problem, and, there-
fore, such a plate is subject to change in buckle
pattern. For plates with zero in-plane displace-
ment normal to all edges and subject to a uniform
temperature rise no buckle pattern change is
indicated.

LaNcLEY RESEARCH CENTER,
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
LancrLEY FIELD, VA., March 6, 1959.



APPENDIX

EXPERIMENT

Data are presented from two different types of
test specimens which are described in this appendix.
The loaded edges in both types of test specimens
were ground flat and perpendicular to the longi-
tudinal axis of the specimens. They were com-
pressed ‘“‘flat ended’’ between the platens of the
1,200,000-pound capacity hydraulic testing ma-
chine at the Langley structures research labora-
tory, which applies load through the use of a
hydraulic ram.

PLATE SUPPORTED BY MULTIPLE-BAY FIXTURE

Apparatus and method of testing.—In one test
the plate was supported by a multiple-bay fixture
(fig. 9) in an attempt to provide the edge condi-
tions usually specified by theory along the un-
loaded edges of each panel: simply supported
straight edges free of in-plane shear. A 2024-T3

aluminum-alloy flat plate 52.32 inches by 25.36
inches by 0.072 inch was tested. The plate was
supported laterally with knife edges (on both
sides) by a fixture forming ecleven panels 4.71
inches by 25.36 inches. Spur gears attached to
the knife edges and racks attached to the base
plates of the fixture were used for positioning the
knife edges. The knife edges could rotate and
thus allowed uniform in-plane movement normal
to the unloaded edges of each panel. Magnets
installed in the base plate supported the weight
of the knife edges during assembly. The knife
edges were accurately placed by the use of keys
through the base plate which were removed after
initial loading. A view of one of the base plates
with the knife edges in place is shown in figure 9.
A lubricant was applied to the plate under the
knife edges to facilitate in-plane movement of the

Ficure 9.—Base plate of multiple-bay fixture showing knife edges used to support flat plate.

[\
St
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plate along the unloaded edges and to leave them
virtually free of shear.

The instrumentation included eight pairs of
wire-resistance strain gages cemented to the plate
back-to-back and spaced 2 inches apart along the
center of the middle bay. The gages were wired
so that strain differences could be measured at the
location of each pair of gages. Wire-resistance
strain gages on a calibrated cantilever beam were
used to obtain the total shortening by measuring
the change of distance between the platens of the
testing machine. The data from all the gages
were recorded simultaneously and continuously
from initial load to failure.

Analysis and discussion of data.—The total-
shortening data were taken by measuring the
distance between the platens at a short distance
from the test specimen. Because of deformation
of the platens during loading the prebuckling
slope of the load-shortening curve was in error.
The deformation of the platen is believed to be
directly proportional to load, and the data were
corrected accordingly. The corrected load-short-
ening curve is given in nondimensional form in
figure 3. The breaks in the curve after buckling
occurred because of changes in buckle pattern.
The changes occurred in a violent manner and
were observed to go from 5 to 6 to 7 to 8 buckles.

The pair of back-to-back strain gages indicating
the largest strain difference along the center line
of the middle bay were assumed to be on the crest
of a buckle (no direct observation could be made).
No appreciable error is expected from this assump-
tion since the variation of strain near the crest
of a buckle is small.

Initially the plate buckled into 5 buckles and
one set of gages was nearest the crest. After the
buckle pattern changed to 6 buckles, another set
of gages was nearest the crest. The results from
the set of gages nearest the crest in the lower range
and from the other set of gages in the upper range
are shown in nondimensional form in figure 4,
where the bending strain at the crest of the buckle
is plotted against the load. The load at which
the material started to become plastic was meas-
ured by other gages which gave the extreme fiber

strains at the crest of the buckle and is indicated
in figure 4.
Z-STIFFENED PANELS

Data on four Z-stiffened panels similar to those
used in aircraft wing construction were obtained
in the range from zero strain up to several times
the buckling strain.

Test specimens and instrumentation.—The
important dimensions of the four panels tested
are shown in figure 10. Each panel had four
Z-section stiffeners attached to flat sheet at three
equal spacings. These Z-stiffened panels were
part of a large group of panels described in refer-
ence 17. The panels described in figure 10 had
additional instrumentation in order to permit
a study of their postbuckling behavior. The
material in the sheet and stiffeners was artificially
aged alclad aluminum-alloy plate, which is dis-
cussed in reference 17. Wire-resistance strain
gages were cemented to the panels so that strains
could be measured at the crest of a buckle and
at the stiffeners.

Analysis of data.—The strains were measured
at intervals of load from initial load to failure.
The strains measured at the stiffeners were aver-
aged, and they were plotted against the strain
measured at the crest of a buckle in figure 5. No
abrupt change in buckle pattern occurred in the
range shown. The strains believed to have been
in the plastic range are indicated.
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Ficure 10.—Dimensions of the four Z-stiffened panels
tested.
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